
RAPID: An External Router for DTN2
http://prisms.cs.umass.edu/rapid/

Brian Lynn

<first initial last name at cs.umass.edu>
University of Massachusetts, Amherst

November 20, 2008

Notice

Copyright 2008 University of Massachusetts, Amherst.

RAPID is licensed under the Apache License, Version 2.0 (the "License"); you may not use
RAPID except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and
limitations under the License.

The development of RAPID was supported by Defense Advanced Research Projects Agency
(DARPA) grant W15P7T-05-C-P213. Distribution Statement A: Approved for public release;
distribution unlimited.

Introduction

The Resource Allocation Protocol for Intentional DTN, or RAPID, is a routing algorithm for
disruption-tolerant networks [1]. We have implemented RAPID for the Delay-Tolerant Networking
Research Group’s DTN reference implementation (DTN2) [2].

The RAPID algorithm was a result of research performed on DieselNet [3], a mobile network test
bed developed by the University of Massachusetts, Amherst. A defining characteristic of a mobile
network such as DieselNet is that on any given day nodes may have contact with only a subset of
the other nodes, and that contact may be infrequent and for very brief periods of time. The RAPID
algorithm was designed to effectively route data in a mobile network. A feature of RAPID is that it
functions by optimizing for a specific routing metric. In our DTN2 implementation of RAPID, the
metric is to minimize the delivery time for all DTN2 bundles.

RAPID executes as an external DTN2 router, using DTN2’s XML-based External Router
Interface. RAPID is implemented in Java.

Files and Directories

RAPID requires the DTN2 external router schema file. By default, DTN2 installs the file as
/etc/router.xsd.

RAPID exchanges a meta data bundle when it comes into contact with an instance of the RAPID
router running on another node. In order for RAPID to be able to read a received meta data
bundle's payload, RAPID must have read access to the DTN2 bundle directory. The directory is
often named /var/dtn/bundles.

RAPID periodically writes to a persistent file which bundles are known to have been delivered. By
default, RAPID writes to a file named /var/rapid_router/acks. Therefore RAPID will need read and
write access to the /var/rapid_router directory. The location of the file may be overridden in the
RAPID configuration file. It is also possible to disable this functionality.

Building and Installing the RAPID Router

You should have Java 5.0 (a.k.a. 1.5.0) or later installed on your system. To build and install
RAPID for DTN2:

 $ Untar the files: tar zxf rapid_router-0.9.4.tar.gz (or whatever your tar is named)

 $ cd rapid_router
 $./install.sh

The install script will prompt you to build RAPID if necessary, and it will also ask you questions
about what directories to use. The script should work regardless of whether you have RAPID
source or a pre-built distribution.

You can use make to build RAPID by simply typing:

 $ make

The syntax for installing RAPID is:

Make install [INSTALLDIR=<directory>] [ACKSDIR=<directory>]

To install RAPID in its default location, /usr/local/rapid_router, using /var/rapid_router for check
pointing delivered bundles:

 $ make install

To install RAPID in a different directory

 $ make install INSTALLDIR=<directory>

Make will create the ACKSDIR, though there are no files to copy to the directory. You will need to
define the file's path in the RAPID configuration file if using a checkpoint file other than
/var/rapid_router/acks.

Running RAPID

You should have DTN2 installed on your system. RAPID was developed and tested with DTN 2.5,
but appears to work fine with DTN 2.6. Due to limitations in the DTN2 external router interface,
RAPID should be started before starting the DTN2 daemon, dtnd. Once RAPID is running, it
interacts solely with the DTN2 daemon.

When RAPID is installed, a script that runs Java with the RAPID JAR is also installed. The syntax
of the RAPID command is:

 RAPID [-c|--config file] [-x|--xml file] [-l|--log file] [-L|--level N]
 RAPID -v|--version
 RAPID -?|-h|--help

where

-c, --config Specifies a file containing RAPID configuration values. The default is to

have no configuration file and to use all default values.
 -x, --xml Specifies the XML schema definition file that defines the XML messages
 exchanged between RAPID and the DTN2 daemon. The default is
 /etc/router.xsd. The schema file is provided by DTN2.
 -l, --log Defines a logging configuration file. This configuration file is specific to

the logging class being used. By default, RAPID does not require a
logging configuration file. If you are using the Apache log4j logger then
its configuration file can be specified here.

-L, --level Specifies logging verbosity, where 0 is all messages are to be logged
and 6 is no messages are to be logged.

-v, --version Tells RAPID to print its version number and then exit.
 -?,-h,--help Instructs RAPID to output some brief help text and then exit.

The RAPID configuration file is discussed in more detail later in this document.

RAPID Logging

RAPID comes with two implementations of its logging class. By default, it uses the
Console_Logging class which simply logs messages to stdout. RAPID also supports the Apache
log4j logger, which provides greater flexibility over where output is logged. To use the Apache
log4j logger:

• Download the log4j JAR file from http://logging.apache.org/log4j/1.2/download.html.
Install it on your system, if it is not already installed.

• Edit src/Makefile to build Log4j_Logging.
• Edit the RAPID script so the Java -classpath references the JAR file.
• Rebuild and re-install RAPID.
• Add a line to the RAPID configuration file: loggingClass=Log4j_Logging
• Specify the RAPID configuration file when running RAPID.
• Optionally, use the --log parameter when running RAPID to reference your log4j

configuration file.

The logging level can be defined by the --level parameter of the RAPID command. Specifying a
level enables output of logging messages at or above that level. RAPID uses the logging levels
defined by Apache log4j.

0 - Tracing messages.
1 - Debugging messages.
2 - Informational messages.
3 - Warnings.
4 - Errors.
5 - Fatal error messages.
6 - This level results in no messages being logged.

If using the Console_Logging class the default level is 4, warnings.

DTN2 Configuration

Important: RAPID requires that the DTN2 configuration file -- normally /etc/dtn.conf -- include the
following line:

 param set early_deletion false

If this option is not set then DTN2 may delete bundles after they have been initially sent,
preventing RAPID from replicating bundles.

You also need to make certain that DTN2 is configured to use an external router:

 route set type external

RAPID also assumes that DTN2 is configured to open and close links as nodes come in and out
of contact. This may include using a discovery protocol. The RAPID_Policy class supports the
ability to add a simple link management class.

RAPID Routing and Implementation Overview

This section provides a very brief overview of RAPID routing and its implementation for DTN2.
You should refer to [1] for more details on RAPID. The RAPID_Policy class implements RAPID
and makes all of the routing decisions.

Remember that RAPID was created for mobile, disruptive networks. This is reflected in the
characteristics of RAPID noted below.

• RAPID assumes that links between nodes are dynamic and that routes are transient. No
effort is made to learn the network topology because it is fluid. Instead, RAPID attempts
to calculate the likelihood some node will be in contact with another node.

• Since links are typically short-lived, RAPID assumes that bandwidth is in shorter supply
than storage. The goal of RAPID is to prioritize bundles in order to effectively make use
of bandwidth. When two nodes establish a connection, the assumption is that the link
may not persist long enough to exchange all bundles. (Though RAPID makes use of on
demand links, the assumption is that a DTN2 discovery service is employed.)

• RAPID does not generate explicit, per-bundle delivery acknowledgments to be
propagated throughout the network. Instead, a list of bundles known to have been
delivered is exchanged when a link is first established.

The DTN2 / RAPID architecture is very simple at the highest level. The DTN2 daemon, dtnd,
sends multicast packets to be received by a local router process. These packets contain XML
data and provide notification of events, such as the creation of a link or the receipt of a bundle.
The router process, in this case RAPID, sends multicast XML messages to dtnd requesting that
some action be taken, such as the transmission of a bundle. Note that the exchanged messages
are not to be viewed as being conversational. For example, RAPID may request that dtnd
transmit a bundle but it does not expect a response. If dtnd does transmit the bundle, it will send
a multicast message about the transmission, but that message is a separate event and not a
reply to the transmit request. The implication of this is that requests to dtnd do not have negative
acknowledgments.

When DTN2 establishes a connection between two nodes, RAPID is notified and the RAPID
peers exchange meta data. This information is used to prioritize the transmission of bundles in
subsequent meetings between nodes. In the broadest sense, for each known node RAPID sorts
bundles into two queues:

• Bundles that are to be delivered to that node.
• Bundles destined for other nodes but are to be replicated on the node for routing.

Bundles on the delivery queue are sorted by creation time. Bundles on the replica queue are
sorted by a set of criteria that includes the creation time, the probability that the routing node will
meet with the destination node, and the number of copies of the bundle that are known to exist in
the network. For each node that RAPID is aware of, it maintains a list of bundles the node is
known to posses. This is done to minimize bundles being redundantly sent to a node.

The exchanged meta data provides the information for prioritizing bundles on each replica queue.
The meta data contains:

• Any known contact history between nodes. This includes the average time between

contacts, the average duration of contacts, and the average number of bytes transferred
per connection.

• A list of unexpired bundles possessed by the node.
• A list of unexpired bundles that are known to have been successfully delivered in the

network (delivery acknowledgments).

The meta data a node receives is used in the generation of future meta data bundles. For
example, the list of delivered bundles is the union of bundles the node has delivered and all other
acknowledgements it has learned about by receiving meta data. If RAPID receives meta data that
indicates that a bundle it possesses has already been delivered, it will delete that bundle.

RAPID uses several means to determine what bundles another node possesses. These include:

• Received meta data, where a node will list the bundles in its possession.
• Receipt of a bundle. RAPID, of course, can assume that a node sending a bundle has the

bundle.
• If dtnd indicates that a bundle was successfully transmitted, then RAPID assumes the

peer has a copy of the bundle.
• RAPID also will infer that a bundle's originating node is in possession of the bundle.

Similarly, there are several methods for concluding that a bundle was delivered (as opposed to
replicated). Note that delivery indicates that the destination node has a copy of the bundle. It does
not indicate that the endpoint has been notified of the bundle.

• If a node receives a bundle and that node is the bundle's target destination, obviously it
notes that the bundle has been delivered.

• If dtnd indicates that a node has successfully transmitted a bundle to the destination
node, the transmitting node assumes delivery.

• Received meta data lists bundles known to have been delivered.

Below are some notes on the deletion of bundles.

• By default, when dtnd successfully transmits a bundle it then deletes the bundle. This is
not the desired behavior; otherwise RAPID would not be able to replicate bundles on
multiple nodes. That is why it's important to set early_deletion to false in the DTN2
configuration. The proper behavior is for dtnd to retain a copy of the bundle after
transmission.

• In the case where a bundle is destined for the local node, dtnd will automatically delete
the bundle after it has been received by the endpoint. Dtnd will then send RAPID a
bundle deletion notification.

• Dtnd will delete bundles when they expire and send notifications to RAPID.
• If RAPID learns of a bundle delivery acknowledgement via meta data and it is in

possession of that bundle, it will ask dtnd to delete the bundle.
• If RAPID forwards a bundle to the destination node, RAPID will request that the bundle

be deleted.

Needless to say, RAPID does not actually possess, delete or transmit bundles. This is all
performed by the DTN2 daemon, dtnd. Instead, RAPID makes decisions and informs dtnd which
bundles are to be transmitted or deleted.

RAPID Classes

This section can easily be skipped. Its purpose is to provide an overview of the main classes
should somebody be interested in understanding the source code.

The RAPID router acts upon several fundamental constructs:

Bundles. A bundle is DTN2 terminology for an application-defined unit of data that is to be
transmitted to another application, typically on another system. The RAPID router attempts to
transmit entire bundles; it does not perform explicit fragmentation of bundles. All bundles have a
sender-defined expiration time. A bundle is uniquely identified across all systems by a global
DTN2 identifier known as a GBOF (global bundle or fragment) identifier, or simply GBOF.
Internally, DTN may also refer to a bundle present on the local system through a system-specific
handle known as the local ID.

Nodes. A node is the terminology we use for systems. Nodes and applications are defined within
URI-style endpoint identifiers (EIDs). For example, given URI dtn://name.dtn/app we use
dtn://name.dtn to identify the node. We currently do not support wildcarded nodes, though
wildcarded application endpoints are permitted.

Links. A link represents a communication channel. DTN2 defines several types of links: always
on, on demand, scheduled and opportunistic. Opportunistic links are typically discovered links,
such as via a DTN2 discovery protocol or as the reciprocal link to an inbound DTN2 connection.
An open link provides access to a specific node. In our implementation of RAPID, we manage the
association of nodes and links such that if two links are concurrently open to the same node, we
make use of only a single link.

Routes. A route identifies a link that can be used for communication with a node. RAPID defines
two types of routes: persistent and temporal. Persistent routes are those defined by DTN2, such
as when a route is configured in the DTN2 configuration file. Persistent routes typically identify
which nodes can be contacted using specific always on, on demand or scheduled links. RAPID
creates a temporal route whenever a link is opened to a specific node. The temporal route is
destroyed when the link is closed. If there is a bundle to be sent to a node that has no associated
active link, but if a persistent route exists to that node, RAPID may request that DTN2 open the
link represented by the route. Persistent and temporal routes are defined by the RAPID
implementation; they are not DTN2 constructs.

Policy Manager. This refers to the class that makes routing decisions. It is an implementation of
the RAPID Policy interface. Calls are made to the policy manager when bundles, links and nodes
are created or removed. The policy manager is responsible for deciding which bundles are to be
sent to which nodes, which bundles are to be transmitted on which links, and when bundles are to
be deleted from a system. It is also consulted before requesting that on demand links be opened.

Below is an overview of the primary Java classes used by the RAPID router.

RAPID

The RAPID class contains the main body of the router. This class reads the command line
arguments, loads the configuration file (if defined), starts logging, and sets up the SAX (Simple
API for XML) handler. Once initialized, it joins the DTN2 multicast group and continuously loops
receiving locally broadcast messages from the DTN2 daemon, dtnd. When XML messages are
received from DTN2, the SAX handler is responsible for parsing the message and dispatching the
appropriate method.

RAPID_SAX

This class is invoked when RAPID receives an XML message from the DTN2 daemon. It extends
the Java SAX DefaultHandler class. RAPID_SAX parses the XML message and calls the
corresponding method in the Handlers class.

Handlers

This is an abstract class that defines a method for each XML event message that may be
received by RAPID_SAX. The RAPID_Routing class is the real implementation of the Handlers
class. We use an abstract class that supplies null methods for all XML messages. If the class that
extends Handlers, i.e. RAPID_Routing, does not support an event then the empty method in
Handlers in invoked.

XMLTree

This is a utility class. When RAPID_SAX parses an XML message each element is placed in an
XMLTree object. XMLTree objects may be linked to each other to represent the hierarchy of
elements in an XML message. XMLTree objects have methods for accessing attributes and child
elements.

RAPID_Routing

The RAPID_Routing class is the heart of the router, extending the methods defined by Handlers.
It is here that the XML messages sent by the DTN2 daemon, as represented by XMLTree
objects, are initially acted upon.

Logging

This is an interface that defines the logging class used by the RAPID router. RAPID provides two
implementations of the Logging class: Log4j_Logging and Console_Logging. By default,
Console_Logging is used though you can define which implementation to invoke via the RAPID
configuration file. We use a configurable logging class so that others may implement their own
loggers, allowing them to customize logging to meet specific needs.

Console_Logging

This is a simple implementation of the Logging interface that outputs logging messages to stdout.
It is the default logging class

Log4j_Logging

This is a wrapper around the Apache log4j logger. Using this logger requires the log4j JAR. . Add
the line “loggingClass=Log4j_Logging” to your RAPID configuration file to enable this logger.

ConfFile

This is a utility class that reads and parses the RAPID configuration file.

Bundle

A Bundle object represents a DTN2 bundle. RAPID creates an instance of a Bundle object for
each bundle on the system.

Bundles

This class manages the set of individual Bundle objects.

Node

A Node object represents a node, e.g. dtn://node.dtn. RAPID creates a Node object whenever it
learns of a node, such as when a link is established to a node, or when a received bundle

references a node. The Policy Manager is also able to create Node objects as it learns about
other nodes. Node objects contain three transmission queues for sending bundles: a meta data
queue, a destination queue and a replica queue. The meta data queue is intended for bundles
destined for that node’s router. The destination queue is for bundles destined for that node; and
the replica queue is for bundles to be replicated on the node for further routing. The
implementation of the queues is maintained by the Policy Manager.

Nodes

This is the class that manages the set of individual Node objects.

Link

A Link object represents a DTN2 link and an instance is created whenever DTN2 notifies RAPID
that it has created a link. A Link object may become associated with a Node object when the link
is opened; a DTN2 link that is not open is not associated with a Node. When a link is open it
represents communication with another node. RAPID will associate the Link with the
corresponding Node object, unless the Node object is already associated with another Link
object. A node will never be associated with more than one link, even if there are multiple links
open to the same node. Link objects use a separate Link Thread, in addition to executing on the
main RAPID thread. The Link Thread is generally dormant unless the link is open and the Link
object is associated with a Node object. The Link Thread is responsible for removing a bundle
from one of the Node’s three transmission queues and initiating a request to DTN2 for the bundle
be transmitted.

Links

The Link class manages the set of individual Link objects.

Routes

The Routes object maintains the persistent and temporal routes. A route is simply a mapping of a
Node (as identified by the node portion of the EID) to a Link. Persistent routes identify links that
are either open or closed. A temporal route maps a Node to an open link. Temporal links are
created when a link is opened, even if there exists a persistent route. A node can be mapped to
more that one link via separate routes. Note that a temporal route is separate from the
association between a Link object and a Node object described above. A temporal link is a
prerequisite for an association, but the association defines the Node object’s active link. As
previously noted, a Node object will never have more than one active link.

Policy

The Policy class defines the interface to be implemented by a Policy Manager. The interface
source code describes the individual methods. By default, RAPID_Policy implements this class,
but other implementations can be defined via the RAPID configuration file.

RAPID_Policy

This class is an implementation of the Policy class. It provides the RAPID routing algorithm, but it
is also generically referred to as the Policy Manager. There are calls into the Policy class
sprinkled throughout the router, often mirroring the XML events defined by the /etc/router.xsd
schema file. RAPID_Policy largely consists of manipulating shadow data structures dealing with
bundles and nodes. The primary function of RAPID_Policy is to prioritize the delivery and
replication of bundles in anticipation of the local node coming into contact with another node. The
assumption is that RAPID will be able to replicate only a subset of its bundles on each node that it
meets, and that some of the bundles will expire before RAPID comes in contact with the actual

destination node. RAPID has no a priori knowledge of the network state, but as it comes into
contact with other nodes it exchanges meta data with its RAPID peers to help it make better
decisions.

LinkPolicyManager

This is another interface class, and by default there is no implementation of the class. This
interface is specific to the RAPID_Policy class rather than defined by the RAPID router. If an
implementation of this class exists, RAPID_Policy will call into the LinkPolicyManager each time a
link is created, deleted, opened or closed, or if there is a request by the router to open a link. This
class can also take advantage of RAPID’s XML interface into DTN2 for creating, opening and
closing links. The intent of this interface is to allow for system- or network-specific link
management routines to be utilized, possibly including discovery of opportunistic links. For
example, an implementation of this interface exists for DieselNet, where the interface is aware of
how DieselNet manages its network connections. The DieselNet implementation creates, opens
and closes DTN2 links in conjunction with DieselNet’s bus-discovery mechanisms.

PeerListener

The PeerListener object exists as a thread dedicated to processing router-specific bundles
received by peer routers. DTN2 specifies that any EID with an endpoint that begins with ext.rtr
(e.g., dtn://node.dtn/ext.rtr/RAPID) is to be destined for an external router, and it generates a
specific XML event when it receives a bundle containing the ext.rtr endpoint. When the
RAPID_Routing class receives the event, it dispatches the PeerListener object’s thread to
process the bundle. Specifically, the PeerListener thread extracts the data from the bundle,
deletes the bundle, and then makes a call into the Policy Manager passing the bundle’s data.
This is the recipient half of the mechanism for exchanging meta data between routers. To send
meta data, the policy manager must inject a bundle into DTN2. This is done by the Policy
Manager via a method in the Requester class.

Requester

This is a utility class responsible for composing and sending all XML messages to the DTN2
daemon. These classes are used throughout RAPID. Most XML messages sent to DTN2 are
stateless: an event may cause DTN2 to do something that results in an XML message being
received by the router, but it is generally up to the router to correlate events. Also, events sent to
DTN2 typically do not have negative acknowledgments. For example, the router may send a
request to DTN2 to inject a bundle and later the router may receive an XML message indicating
that a bundle was injected. But DTN2 will not send an XML message if it fails to inject the bundle.
The same is true for transmitting bundles on a link.

To expand on injecting a bundle, since it is fundamental to RAPID exchanging meta data with a
peer node: When the Requester injects a bundle for the router it assigns a unique request ID to
the bundle. It is up to the policy manager to later associate the injected bundle with the request
using the id. The Requester only plays a minor role in injecting bundles: it sends the request to
DTN2 after the policy manager creates the data. But it should be noted that injected bundles are
handled differently from other bundles by RAPID. RAPID creates a Bundle object for an injected
bundle, but it does not retain knowledge of the bundle in the Bundles class.

GBOF

This is another utility class, and it contains static methods for manipulating the GBOF. This
includes formatting the GBOF as XML as required by DTN2. It also includes methods for creating
a hash key from the values that make up the GBOF. This hash key is used extensively and
consistently throughout RAPID and the Policy Manager for referencing a bundle.

Configuring RAPID

RAPID can be customized through a configuration file specified in the runtime command line.
There must be no more that one configuration option per line in the file, and must be specified
using the syntax: variable=value. The value may be double or single-quoted. Lines that begin with
a hash character (#) are treated as comments and ignored. Comments should not appear on the
same line as a configuration value. The following options are supported.

The default values for most, if not all variables should be sufficient.

Variable Type Default Description

routerEndpoint string ext.rtr/RAPID Defines the external router's
endpoint, which is typically
used to receive control
messages from peer
instances of the router. An
example is meta data
exchanged between the
routers. DTN2 special-cases
endpoints that begin with
"ext.rtr/". All communicating
routers need to agree on the
endpoint name.

multicastGroup string 224.0.0.2 Defines the multicast group
the router is to join for
exchanging XML messages
with the DTN2 daemon. This
is defined by DTN2.

multicastPort integer 8001 Defines the multicast port
used by the DTN2 daemon.
This is defined by DTN2.

multicastSends boolean false Defines the type of socket
used to send requests to
dtnd. If true, use a multicast
socket joined to the
multicast group and a TTL of
0. If false, use a datagram
socket bound to the
loopback address. The goal
is to send messages with
their scope limited to the
local system. On some
systems the TTL is not
honored. On other systems,
not using a multicast socket
does not work.

loopbackAddress string 127.0.0.1 Address to bind to if
multicastSends=false.

Variable Type Default Description

xmlSchema string /etc/router.xsd File containing the XML
schema definition for the
messages exchanged with
dtnd, the DTN2 daemon.
This file should be supplied
by DTN2. The command line
has precedence.

xmlValidate boolean true If set to false then the XML
received from the daemon is
not validated against the
schema.

loggingClass string Console_Logging Allows for a user-specified
logging class. The default is
Console_Logging. A class
supporting the Apache log4j
logger is also provided.

logConfiguration string Logging configuration file.
The command line has
precedence. The format of
the file is logging class
specific. The command line
has precedence.

logLevel integer Logging level. The
command line has
precedence. If not specified,
the default is defined by the
logger.

terminateWithDTN boolean true By default RAPID terminates
when dtnd indicates that it is
shutting down. Set to false
to override this behavior.

bundlesActiveCapacity integer 384 Initial capacity of the Java
HashMap of all bundles on
the system.

linksHashCapacity integer 16 Initial capacity of the Java
HashMap of all links.

nodesHashCapacity integer 32 Initial capacity of the Java
HashMap of all nodes.

policyAckFile string /var/rapid_router/
acks

RAPID_Policy specific:
Defines the file where
acknowledgments of
RAPID-delivered bundles
are checkpointed. This
allows acks to be persistent
if RAPID terminates. If set to
an empty string,
checkpointing will be
disabled.

Variable Type Default Description

policyMaxReplicationCount integer 3 RAPID_Policy specific:
RAPID gives replication
priority to bundles whose
known replication count
doesn’t exceed this value.

policyLocalBundlesCapacity integer 256 RAPID_Policy specific:
Initial capacity of table of all
present, locally generated
bundles.

policyForeignBundlesCapacity integer 256 RAPID_Policy specific:
Initial capacity of table of all
present, remote generated
bundles.

policyAckedBundlesCapacity integer 256 RAPID_Policy specific:
Initial capacity of table of all
known acknowledgments.

policyKnownBundlesCapacity integer 512 RAPID_Policy specific:
Initial capacity of table of all
known bundles, present or
otherwise.

policyNodeBundlesCapacity integer 64 RAPID_Policy specific:
Initial capacity of tables
noting bundles possessed
by a specific node.

policyNodeAcksCapacity integer 64 RAPID_Policy specific:
Initial capacity of tables
noting acknowledgments
possessed by a specific
node.

policyNodeContactCapacity integer 16 RAPID_Policy specific:
Initial capacity of tables
noting a specific node's
contact with other nodes.

policyKnownNodesCapacity integer 16 RAPID_Policy specific:
Initial capacity of table of all
known nodes.

policyDeliveryQueueCapacity integer 24 RAPID_Policy specific:
Initial size of the delivery
queue.

linkPolicyClass string RAPID_Policy specific:
Instructs RAPID to load the
defined class implementing
the LinkPolicyManager
interface.

References

[1] A. Balasubramanian, B. N. Levine, and A. Venkataramani. DTN Routing as a Resource
Allocation Problem. In Proceedings of ACM SiIGCOMM, August 2007.

[2] Delay Tolerant Networking Group, http://www.dtnrg.org.

[3] UMass DieselNet, http://prisms.cs.umass.edu/dome/index.php?page=umassdieselnet.

